

Advanced Computer Vision THU×SENSETIME – 80231202

Chapter 2 - Section 8

Image Segmentation

Dr. Li Hongyang Thursday, April 14, 2022

Partial credit by : Wang Cheng

Part 1Recap: classification loss and detection pipelinePart 23D Detection and BEV PerceptionPart 3Image segmentation

Outline

Recap: Image Classification

- Classification Loss
 - Cross entropy or MSE?

SCORESSOFTMAXPROBABILITIESCROSS ENTROPHYONE HOT2.0 \rightarrow \rightarrow $p = 0.7 \rightarrow$ \rightarrow \rightarrow 11.0 \rightarrow $S(y_i) = \frac{e^{y_i}}{\sum_j e^{y_j}}$ \rightarrow $p = 0.2 \rightarrow$ $-\sum c_i \cdot \log(p_i)$ \rightarrow 00.1 \rightarrow $p = 0.1 \rightarrow$ \rightarrow $p = 0.1 \rightarrow$ \rightarrow 0

For MSE loss, we have

$$L_{mse,i}=rac{1}{2}(y_i-p_i)^2$$

$$p_i = \sigma(Wx + b)$$
 函数 $\sigma(\cdot)$ 是 Sigmoid 函数

The grad for MSE loss is: $\partial L_{mse,i}/\partial W = (y_i - p_i)p_i(1 - p_i)x$

- <u>Wx+b</u> could be very large/small in the first few iterations; since parameters are randomly initialized.
- Gradient vanishing!

Recap: Image Classification

The grad for CE loss is: $\partial L_{ce,i}/\partial W = -(y_i - p_i)x$

Gradient vanishing! <u>resolved</u>

Recap: Image Classification

- Classification Loss
 - Cross entropy or MSE?

Multi-classification CE loss:

 $p_{i,k} = \exp(q_{i,k}) / \sum_j^M \exp(q_{i,j})$

$$L = \sum_i^N L_{ce,i} = -\sum_i^N \sum_j^M y_{i,j} \log(p_{i,j})$$

Further extension:

From cross entropy loss to Focal loss and Circle loss What's the relationship?

- Background
 - Consistency Regularization

 $\|p_{\text{model}}(y \mid \text{Augment}(x); \theta) - p_{\text{model}}(y \mid \text{Augment}(x); \theta)\|_{2}^{2}$ 模型在无标签数据 <u>增广前</u>和 <u>增广后</u>的预测应该一致

- Entropy Minimization
 - Minimizes the entropy of *p_{model}*(*y*|*x*; θ)
 要求分类器对无标签样本输出熵较少的结果
- Traditional Regularization

加入一些常量干扰,使得模型难以记住训练样本,来达到泛化要求

- Mixup. Beyond Empirical Risk Minimization (经验风险最小化;训练误差越小越好)
 - A simple and data-agnostic data augmentation method

 $\tilde{x} = \lambda x_i + (1 - \lambda) x_j$, where x_i, x_j are raw input vectors $\tilde{y} = \lambda y_i + (1 - \lambda) y_j$, where y_i, y_j are one-hot label encodings

(a) One epoch of *mixup* training in PyTorch.

(b) Effect of mixup ($\alpha = 1$) on a toy problem. Green: Class 0. Orange: Class 1. Blue shading indicates p(y = 1|x).

Zhang H, Cisse M, Dauphin YN, Lopez-Paz D. mixup: Beyond empirical risk minimization. arXiv preprint arXiv:1710.09412. 2017 Oct 25.

Chapter 2 Section 8

- mixup: Beyond Empirical Risk Minimization
 - Why use beta distribution?
 - Similar to label smooth?
 - Why mixup works? (Generalization gap between training data and real data)

https://www.zhihu.com/question/67472285

● 谢流远 ◇ 深度学习(Deep Learning)话题下的优秀答主

77 人赞同了该回答

Mixup超好用的,轻松提高一个点,参见我们的paper:

arxiv.org/abs/1812.0118...

编辑于 2018-12-07

• mixup: Beyond Empirical Risk Minimization

Further reading

- MixMatch
- ReMixMatch
- FixMatch

- MixMatch: A Holistic Approach to Semi-Supervised Learning
 - Stochastic data augmentation is applied to an unlabeled image K times
 - The average of these K predictions is "sharpened" by adjusting the distribution' s temperature

Berthelot D, Carlini N, Goodfellow I, Papernot N, Oliver A, Raffel C. Mixmatch: A holistic approach to semi-supervised learning. arXiv preprint arXiv:1905.02249. 2019 May 6.

- MixMatch: A Holistic Approach to Semi-Supervised Learning
 - 1: Input: Batch of labeled examples and their one-hot labels $\mathcal{X} = ((x_b, p_b); b \in (1, ..., B))$, batch of unlabeled examples $\mathcal{U} = (u_b; b \in (1, ..., B))$, sharpening temperature T, number of augmentations K, Beta distribution parameter α for MixUp.
 - 2: for b = 1 to *B* do
 - 3: $\hat{x}_b = \text{Augment}(x_b)$ // Apply data augmentation to x_b
 - 4: for k = 1 to K do
 - 5: $\hat{u}_{b,k} = \text{Augment}(u_b)$ // Apply k^{th} round of data augmentation to u_b
 - 6: end for

7: $\bar{q}_b = \frac{1}{K} \sum_k p_{\text{model}}(y \mid \hat{u}_{b,k}; \theta)$ // Compute average predictions across all augmentations of u_b 8: $q_b = \text{Sharpen}(\bar{q}_b, T)$ // Apply temperature sharpening to the average prediction (see eq. (7))

9: end for

10: $\hat{\mathcal{X}} = ((\hat{x}_b, p_b); b \in (1, ..., B)) // Augmented labeled examples and their labels$ $11: <math>\hat{\mathcal{U}} = ((\hat{u}_{b,k}, q_b); b \in (1, ..., B), k \in (1, ..., K)) // Augmented unlabeled examples, guessed labels$ $12: <math>\mathcal{W} = \text{Shuffle}(\text{Concat}(\hat{\mathcal{X}}, \hat{\mathcal{U}})) // \text{Combine and shuffle labeled and unlabeled data}$ 13: $\mathcal{X}' = (\text{MixUp}(\hat{\mathcal{X}}_i, \mathcal{W}_i); i \in (1, ..., |\hat{\mathcal{X}}|)) // \text{Apply MixUp to labeled data and entries from W}$ 14: $\mathcal{U}' = (\text{MixUp}(\hat{\mathcal{U}}_i, \mathcal{W}_{i+|\hat{\mathcal{X}}|}); i \in (1, ..., |\hat{\mathcal{U}}|)) // \text{Apply MixUp to unlabeled data and the rest of W}$ 15: return $\mathcal{X}', \mathcal{U}'$

- ReMixMatch: Semi-Supervised Learning with Distribution Matching and Augmentation Anchoring
 - Improved version of MixMatch
 - Distribution Alignment (left) and Augmentation Anchor (right)

Berthelot D, Carlini N, et al. Remixmatch: Semi-supervised learning with distribution alignment and augmentation anchoring. arXiv preprint arXiv:1911.09785. 2019 Nov 21.

- FixMatch: Simplifying Semi-Supervised Learning with Consistency and Confidence
 - Combination of Consistency regularization and pseudo-labeling.

Sohn K, Berthelot D, et al. Fixmatch: Simplifying semi-supervised learning with consistency and confidence. arXiv preprint arXiv:2001.07685. 2020 Jan 21.

- FixMatch: Simplifying Semi-Supervised Learning with Consistency and Confidence
 - FixMatch consists of two loss terms: a supervised loss ℓ_s and an unsupervised loss ℓ_u
 - ℓ_s is the standard cross-entropy loss

$$\ell_s = rac{1}{B} \sum_{b=1}^B \mathrm{H}(p_b, p_\mathrm{m}(y \mid lpha(x_b)))$$

- Convert the prediction on the weakly-augmented image to a one-hot pseudo-label
- ℓ_u is the cross-entropy loss against the model's output for the strongly-augmented image

$$\ell_u = \frac{1}{\mu B} \sum_{b=1}^{\mu B} \mathbb{1}(\max(q_b) \ge \tau) \operatorname{H}(\hat{q}_b, p_{\mathrm{m}}(y \mid \mathcal{A}(u_b)))$$

/14

- **Two stage** vs One-stage pipeline
 - Anchor placement: large anchors should be put in the low-level layers or high-level layers?

- **Two stage** vs One-stage pipeline
 - Loss of Rol pooling

 $rac{\partial L}{\partial x_i} = \sum_r \sum_j \left[i = i^*(r, j)\right] rac{\partial L}{\partial y_{rj}}.$ (4)

In words, for each mini-batch RoI r and for each pooling output unit y_{rj} , the partial derivative $\partial L/\partial y_{rj}$ is accumulated if i is the argmax selected for y_{rj} by max pooling. In back-propagation, the partial derivatives $\partial L/\partial y_{rj}$ are already computed by the backwards function of the layer on top of the RoI pooling layer.

> Rol layer的BP计算。 详见Fast RCNN paper.

Chapter 2 Section 8

• Two stage vs One-stage pipeline

Loss of Rol pooling

Figure 3. **RoIAlign:** The dashed grid represents a feature map, the solid lines an RoI (with 2×2 bins in this example), and the dots the 4 sampling points in each bin. RoIAlign computes the value of each sampling point by bilinear interpolation from the nearby grid points on the feature map. No quantization is performed on any coordinates involved in the RoI, its bins, or the sampling points.

Chapter 2 Section 8

- Two stage vs One-stage pipeline
 - No RPN, No Rol-pooling

Fig. 1: **SSD framework.** (a) SSD only needs an input image and ground truth boxes for each object during training. In a convolutional fashion, we evaluate a small set (e.g. 4) of default boxes of different aspect ratios at each location in several feature maps with different scales (e.g. 8×8 and 4×4 in (b) and (c)). For each default box, we predict both the shape offsets and the confidences for all object categories ((c_1, c_2, \dots, c_p)). At training time, we first match these default boxes to the ground truth boxes. For example, we have matched two default boxes with the cat and one with the dog, which are treated as positives and the rest as negatives. The model loss is a weighted sum between localization loss (e.g. Smooth L1 [6]) and confidence loss (e.g. Softmax). What's the output feature map in this (c) example?

Answer: **4 x 4** x (**4** * **4** + **p**)

Within each grid cell:

- Regress from each for the B base boxes (aka anchors) to a final box with (dx, dy, dh, dw)
- Predict scores for each of *p* classes

Detection loss

Fig. 1: **SSD framework.** (a) SSD only needs an input image and ground truth boxes for each object during training. In a convolutional fashion, we evaluate a small set (e.g. 4) of default boxes of different aspect ratios at each location in several feature maps with different scales (e.g. 8×8 and 4×4 in (b) and (c)). For each default box, we predict both the shape offsets and the confidences for all object categories $((c_1, c_2, \dots, c_p))$. At training time, we first match these default boxes to the ground truth boxes. For example, we have matched two default boxes with the cat and one with the dog, which are treated as positives and the rest as negatives. The model loss is a weighted sum between localization loss (e.g. Smooth L1 [6]) and confidence loss (e.g. Softmax).

https://arxiv.org/pdf/1506.01497.pdf

$$L(\{p_i\}, \{t_i\}) = \frac{1}{N_{cls}} \sum_i L_{cls}(p_i, p_i^*) + \lambda \frac{1}{N_{reg}} \sum_i p_i^* L_{reg}(t_i, t_i^*).$$

p* and t* are the ground truth for
classification and localization/regression

• Note that regression loss is only for positive samples.

$$L_{reg}(t_i, t_i^*) = R(t_i - t_i^*)$$

R is the smoothed L1 loss

(a) Image with GT boxes (b) 8×8 feature map (c) 4×4 feature map

A bounding-box regression from an anchor box to a nearby ground-truth box.

$$\begin{split} t_{\rm x} &= (x-x_{\rm a})/w_{\rm a}, \quad t_{\rm y} = (y-y_{\rm a})/h_{\rm a}, \\ t_{\rm w} &= \log(w/w_{\rm a}), \quad t_{\rm h} = \log(h/h_{\rm a}), \\ t_{\rm x}^* &= (x^*-x_{\rm a})/w_{\rm a}, \quad t_{\rm y}^* = (y^*-y_{\rm a})/h_{\rm a}, \\ t_{\rm w}^* &= \log(w^*/w_{\rm a}), \quad t_{\rm h}^* = \log(h^*/h_{\rm a}), \end{split}$$

https://arxiv.org/pdf/1506.01497.pdf

🔊 浦華大学 🔘

$$(\{p_i\}, \{t_i\}) = rac{1}{N_{cls}} \sum_i L_{cls}(p_i, p_i^*) + \lambda rac{1}{N_{reg}} \sum_i p_i^* L_{reg}(t_i, t_i^*).$$

p* and t* are the ground truth for
classification and localization/regression

• Note that regression loss is only for positive samples.

$$L_{reg}(t_i, t_i^*) = R(t_i - t_i^*)$$

R is the smoothed L1 loss

smooth_{L1}(x) = $\begin{cases} 0.5x^2 & \text{if } |x| < 1\\ |x| - 0.5 & \text{otherwise,} \end{cases}$

Chapter 2 Section 8

L

Fig. 2: A comparison between two single shot detection models: SSD and YOLO [5]. Our SSD model adds several feature layers to the end of a base network, which predict the offsets to default boxes of different scales and aspect ratios and their associated confidences. SSD with a 300×300 input size significantly outperforms its 448×448 YOLO counterpart in accuracy on VOC2007 test while also improving the speed.

One-stage detector: open-sourced repos

SSD Demo

https://github.com/hli2020/object_detection#testing-ssd

Or

(ipython notebook例子)

https://github.com/amdegroot/ssd.pytorch/blob/master/demo/demo.ipynb

How to implement a **YOLO (v3)** object detector from scratch in PyTorch <u>https://blog.paperspace.com/how-to-implement-a-yolo-object-detector-in-pytorch/</u>

SSD, YOLO这些方法都是one-stage detector. 没有RPN过程,直接生成检测结果。

• NMS

一种post-processing 方式。 用在**所有**检测系统里。

物体检测的指标里,不允许出现 多个重复的检测,即使这些结果 和真值都比较近。

那么如何删除多余的检测结果呢? Non-maximum suppression (NMS)

做法:

把所有检测结果按照分值(conf. score)从高到底排序,保留最高分数的box,那么和它距离上最近的那个box,就没有必要保留了。

以此类推。

按照类别来做的。

右图例子(检测人脸),

1-4分别是分数由高到低的4个目 标框,假设1,3被判为距离较近, 2,4距离很近,

哪些框保留,哪些要删除?

Part 1Recap: classification loss and detection pipelinePart 23D Detection and BEV PerceptionPart 3Image segmentation

Outline

Bird' s-eye-view Perception

Leaderboard: https://www.nuscenes.org/objectdetection?externalData=all&mapData=no&modalities=Camera

Tech blog:

https://zhuanlan.zhihu.com/p/495819042

Smart Summon - Per-camera detection then fusion (nV)

Goal: summon vehicle to the person nearby Cast out image-space predictions onto vector space

Problem: Per-Camera Detection Then Fusion

Traditional method:

- project from image plane to vector space.
- assumption ground is horizontal.

Don't have depth per pixel

which is not ture

Fusion is difficult as objects span **differently** across images.

Smart Summon - Per-camera detection then fusion (nV)

Caveat 1

Attention is all you need, https://arxiv.org/pdf/1706.03762.pdf 2017

N×

Positional

Encoding

Transformer - Model structure

Add & Norm

Feed

Forward

Add & Norm

Multi-Head

Attention

Input

Embedding

Inputs

Linear

Conca

Scaled Dot-Product

Attention

Linear

Linear Linear

Solution to Caveat 1: Transformer

Output Probabilities

> Softmax Linear

Add & Norn Feed Forward

Add & Norm

Multi-Head

Attention

Add & Norm

Masked

Multi-Head

Attention

Output

Embedding

Outputs (shifted right) N×

Positional

Encoding

MatMul

SoftMax 1

Mask (opt.)

Scale

MatMul

Background on Transformer

- What: a query and a set of key-value pairs to an output
- The output: a **weighted** sum of the **values**, where the weight assigned to each value is computed by a compatibility function of the query with the corresponding

Multi-head attention Dot-product Attention 31

Ω

Improvement after Transformer and Rectification

Before Road edge/curve Laneline After (nV, Transformer + Rectify)

It's basically night and day (天差地别)

Stepping further - Motivation: Lack of memory

Introducing temporal info

Video Neural Net Architecture

feature queue

Input to video module

Positional encoding **(40)**: encode (x,y) as does in Transformer paper Ego kinematics **(4)**: velocity, acc. etc

feature queue

Why use/push the queue?

1. Temporary occlusions => time-based queue (e.g. push every 27ms)
feature queue

Why use/push the queue?

Positional encoding **(40)**: encode (x,y,z) to higher frequency [1] Ego kinematics **(4)**: velocity, acc. etc

1. Temporary occlusions => time-based queue (e.g. push every 27ms)

2. Signs & Markings Earlier on the Road => space-based queue

(e.g. push every 1 meter)

Output h(t) $W \times H \times C$

● 尺寸不一致(300/256) ● 20 × 80 - 我们的理解

CO BIN sensetime

Spatial RNN

Only update RNN at the points where they are <u>nearby</u> the ego car

• to save computational cost

CO Estime

Spatial RNN

Only update RNN at the points where they are <u>nearby</u> the ego car

• to save computational cost

Spatial RNN - Feature Channel Visualization

Spatial RNN - Road reconstruction

Object Detection - Improved Robustness to Temporary Occlusion

Improved Depth & Velocity from Video Architecture

Improved Depth & Velocity From Video Architecture

15

20

10

LEGEND

Radar signal (GT) Video architecture (Ours) Single frame (velocity from differentiable)

Leaderboard: https://www.nuscenes.org/objectdetection?externalData=all&mapData=no&modalities=Camera

Tech blog:

https://zhuanlan.zhihu.com/p/495819042

Chapter 2 Section 8 A

Table 1: **3D Detection Results on nuScenes** test **set.** * notes that VoVNet-99 (V2-99) [21] was pre-trained on the depth estimation task with extra data [31]. "BEVFormer-S" does not leverage temporal information in the BEV encoder. "L" and "C" indicate LiDAR and Camera, respectively.

Method	Modality	Backbone	NDS [↑] mAP	† mATE	mASE↓	mAOE↓	mAVE↓	mAAE↓
SSN [54]	L	-	0.569 0.463	3 -	-	-	-	_
CenterPoint-Voxel [51]	L	-	0.655 0.580) -	-	-	-	-
PointPainting [43]	L&C	-	0.581 0.464	0.388	0.271	0.496	0.247	0.111
FCOS3D [45]	С	R101	0.428 0.358	8 0.690	0.249	0.452	1.434	0.124
PGD [44]	C	R101	0.448 0.386	0.626	0.245	0.451	1.509	0.127
BEVFormer-S	С	R101	0.462 0.409	0.650	0.261	0.439	0.925	0.147
BEVFormer	С	R101	0.535 0.445	0.631	0.257	0.405	0.435	0.143
DD3D [31]	С	V2-99*	0.477 0.418	8 0.572	0.249	0.368	1.014	0.124
DETR3D [47]	С	V2-99*	0.479 0.412	2 0.641	0.255	0.394	0.845	0.133
BEVFormer-S	С	V2-99*	0.495 0.435	0.589	0.254	0.402	0.842	0.131
BEVFormer	С	V2-99*	0.569 0.481	0.582	0.256	0.375	0.378	0.126

Table 2: 3D Detection Results on nuScenes val set. "C" indicates Camera.

Method	Modality	Backbone	NDS↑	mAP↑	mATE↓	mASE↓	mAOE↓	mAVE↓	mAAE↓
FCOS3D [45]	С	R101	0.415	0.343	0.725	0.263	0.422	1.292	0.153
PGD [44]	С	R101	0.428	0.369	0.683	0.260	0.439	1.268	0.185
DETR3D [47]	С	R101	0.425	0.346	0.773	0.268	0.383	0.842	0.216
BEVFormer-S	С	R101	0.448	0.375	0.725	0.272	0.391	0.802	0.200
BEVFormer	С	R101	0.517	0.416	0.673	0.274	0.372	0.394	CA980

Figure 7: Comparision of BEVFormer and BEVFormer-S on nuScenes val set. We can observe that BEVFormer can detect highly occluded objects, and these objects are missed in the prediction results of BEVFormer-S (in red circle).

April 14, 2022

slide credit: 地平线

April 14, 2022

Part 1Recap: classification loss and detection pipelinePart 23D Detection and BEV PerceptionPart 3Image segmentation

Outline

Image Segmentation: An Introduction

语义(semantic) or 实例

2D, 2.5D (depth est.) and 3D

Chapter 2 Section 8

Image Segmentation – popular methods

Semantic segmentation

- FCN
- SegNet
- Dilation
- DeconvNet
- ENet (速度快)
- Deeplab V1 V2 V3
- ParseNet
- RefineNet
- Large Kernel Matters

Instance segmentation

- SDS
- DeepMask
- SharpMask
- MultiPathNet
- MNC
- Mask-RCNN

卷积 (Convolution)

Class torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True) https://pytorch.org/docs/stable/nn.html#torch.nn.Conv2 d

输出大小是多少?

Output size = 20, 33, 25, 50

公式: (W - kernel + 2 pad) / stride + 1 向下取整

普通卷积

W_out = (W - kernel + 2 pad) / stride + 1 反函数 W = (W_out - 1) * stride - 2pad + kernel 反卷积公式 W_out = (W_in - 1) * stride - 2pad + kernel

蓝色的是输入feature map (较小),绿色的是输出(较大) 有stride 版本的反卷积是 先 up-sample输入(蓝色),然后移动filter,正常卷积,得出结果

Chapter 2 Section 8

空洞卷积 (Dilated convolution) - 正常卷积(downsample)的一个细节

• Input: $(N, C_{in}, H_{in}, W_{in})$

• Output: $(N, C_{out}, H_{out}, W_{out})$ where $H_{out} = \left\lfloor \frac{H_{in} + 2 \times \text{padding}[0] - \text{dilation}[0] \times (\text{kernel_size}[0] - 1) - 1}{\text{stride}[0]} + 1 \right\rfloor$ $W_{out} = \left\lfloor \frac{W_{in} + 2 \times \text{padding}[1] - \text{dilation}[1] \times (\text{kernel_size}[1] - 1) - 1}{\text{stride}[1]} + 1 \right\rfloor$

稀疏化filter - 扩大视野(receptive field) 注意:和反卷积不同!

56

Semantic Segmentation: a naïve approach

Semantic Segmentation: FCN

This work is quite like the milestone of RCNN in detection

- 1. 训练问题: 端到端学习
- 2. 连接层问题:全连接改为全卷积,支持可变输入
- 3. 特征图变小问题:利用反卷积向上放大特征图
- 4. 特征融合问题:利用skip connection融合多层特征提高上采样精细度

Long, Shelhamer, and Darrell, "Fully Convolutional Networks for Semantic Segmentation", CVPR 2015 Noh et al, "Learning Deconvolution Network for Semantic Segmentation", ICCV 2015

Semantic Segmentation: FCN

This work is quite like the milestone of RCNN in detection

Long, Shelhamer, and Darrell, "Fully Convolutional Networks for Semantic Segmentation", CVPR 2015 Noh et al, "Learning Deconvolution Network for Semantic Segmentation", ICCV 2015

Semantic Segmentation: DeepLab

V1: ICLR 2015

https://arxiv.org/pdf/1412.7062.pdf

Semantic Image Segmentation with Deep Convolutional Nets and Fully Connected CRFs Code: <u>https://bitbucket.org/deeplab/deeplab-public/src/master/</u>

V2: arXiv:1606.00915

DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs Code: https://bitbucket.org/aquariusjay/deeplab-public-ver2/src/master/

V3: Rethinking Atrous Convolution for Semantic Image Segmentation

https://arxiv.org/pdf/1706.05587.pdf

Website: http://liangchiehchen.com/projects/DeepLab.html

Blog: https://towardsdatascience.com/review-deeplabv3-atrous-convolutionsemantic-segmentation-6d818bfd1d74

Semantic Segmentation: general pipeline

Semantic Segmentation: general pipeline

Semantic Segmentation: general pipeline

Semantic Segmentation: key issues

1. 上采样问题

SegNet, DeconvNet, SharpMask, RefineNet

- a. Encoder-decoder
- b. Deconvolution
- c. Unpooling
- d. Interpolation

2. 底层特征融合

U-net/hourglass structure in pose estimation

Deeplab, ParseNet, PSPNet/ICNet

- a. Skip connect
- b. Refine block
- c. CRF

3. Receptive field

- a. Dilation /hole
- b. Global pooling

4. 多尺度 Deeplab

- a. Multi-scale train/test
- b. high/low layer feature fusion
- c. Spatial pyramid pooling

Instance Segmentation: Mask RCNN

Instance Segmentation: Mask RCNN

Instance Segmentation: Mask RCNN - results

Instance Segmentation: Mask RCNN - results

Chapter 2 Section 8

Image Segmentation: datasets

TABLE 1: Popular large-scale segmentation datasets.

Name and Reference	Purpose	Year	Classes	Data	Resolution	Sequence	Synthetic/Real	Samples (training)	Samples (validation)	Samples (test)
PASCAL VOC 2012 Segmentation 27	Generic	2012	21	2D	Variable	×	R	1464	1449	Private
PASCAL-Context 28	Generic	2014	540 (59)	2D	Variable	×	R	10103	N/A	9637
PASCAL-Part 29	Generic-Part	2014	20	2D	Variable	×	R	10103	N/A	9637
SBD [30]	Generic	2011	21	2D	Variable	×	R	8498	2857	N/A
Microsoft COCO [31]	Generic	2014	+80	2D	Variable	X	R	82783	40504	81434
SYNTHIA 32	Urban (Driving)	2016	11	2D	960×720	X	S	13407	N/A	N/A
Cityscapes (fine) [33]	Urban	2015	30 (8)	2D	2048×1024	1	R	2975	500	1525
Cityscapes (coarse) 33	Urban	2015	30 (8)	2D	2048×1024	1	R	22973	500	N/A
CamVid [34]	Urban (Driving)	2009	32	2D	960×720	1	R	701	N/A	N/A
CamVid-Sturgess 35	Urban (Driving)	2009	11	2D	960×720	1	R	367	100	233
KITTI-Layout 36 37	Urban/Driving	2012	3	2D	Variable	X	R	323	N/A	N/A
KITTI-Ros 38	Urban/Driving	2015	11	2D	Variable	X	R	170	N/A	46
KITTI-Zhang 39	Urban/Driving	2015	10	2D/3D	1226×370	×	R	140	N/A	112
Stanford background 40	Outdoor	2009	8	2D	320×240	X	R	725	N/A	N/A
SiftFlow 41	Outdoor	2011	33	2D	256×256	X	R	2688	N/A	N/A
Youtube-Objects-Jain 42	Objects	2014	10	2D	480×360	1	R	10167	N/A	N/A
Adobe's Portrait Segmentation [26]	Portrait	2016	2	2D	600×800	X	R	1500	300	N/A
MINC 43	Materials	2015	23	2D	Variable	×	R	7061	2500	5000
DAVIS 44 145	Generic	2016	4	2D	480p	1	R	4219	2023	2180
NYUDv2 46	Indoor	2012	40	2.5D	480×640	×	R	795	654	N/A
SUN3D 47	Indoor	2013	1277	2.5D	640×480	1	R	19640	N/A	N/A
SUNRGBD 48	Indoor	2015	37	2.5D	Variable	X	R	2666	2619	5050
RGB-D Object Dataset 49	Household objects	2011	51	2.5D	640×480	1	R	207920	N/A	N/A
ShapeNet Part 50	Object/Part	2016	16/50	3D	N/A	X	S	31,963	N/A	N/A
Stanford 2D-3D-5 51	Indoor	2017	13	2D/2.5D/3D	1080×1080	1	R	70469	N/A	N/A
3D Mesh 52	Object/Part	2009	19	3D	N/A	X	S	380	N/A	N/A
Sydney Urban Objects Dataset 53	Urban (Objects)	2013	26	3D	N/A	×	R	41	N/A	N/A
Large-Scale Point Cloud Classification Benchmark 54	Urban/Nature	2016	8	3D	N/A	×	R	15	N/A	15

Pascal, COCO, Cityspace (cars and all), KITTI

69

Image Segmentation: evaluation metrics

假设K+1类,下标从0到 k。pij 表示属于 i 类的样本被预测为 j 类。

Pixel Accuracy(PA) = (预测对的像素个数)/(总的像素个数)

Mean Pixel Accuracy(MPA)= 平均每类的准确率

$$PA = \frac{\sum_{i=0}^{k} p_{ii}}{\sum_{i=0}^{k} \sum_{j=0}^{k} p_{ij}}$$

$$MPA = \frac{1}{k+1} \sum_{i=0}^{k} \frac{p_{ii}}{\sum_{j=0}^{k} p_{ij}}$$

Mean IoU=平均每类的IOU
$$MIoU = \frac{1}{k+1} \sum_{i=0}^{k} \frac{p_{ii}}{\sum_{j=0}^{k} p_{ij} + \sum_{j=0}^{k} p_{ji} - p_{ii}}$$

Frequency weighted IoU=加权后每类的IOU

$$FWIoU = \frac{1}{\sum_{i=0}^{k} \sum_{j=0}^{k} p_{ij}} \sum_{i=0}^{k} \frac{\sum_{j=0}^{k} p_{ij} p_{ii}}{\sum_{j=0}^{k} p_{ij} + \sum_{j=0}^{k} p_{ji} - p_{ii}}$$

LiDAR Semantic Segmentation

http://www.semantic-kitti.org/tasks.html#semseg

(a) Point-based: disordered

(b) Voxel-based: sparse, quantization loss

(c) Range-based: physical dimensions distorted

Leaderboard. Following leaderboard contains only published approaches, where we at least can provide an arXiv link. (Last updated: August 24, 2021.)

To avoid confusion between the numbers reported in the paper and post-publication results, we report here the numbers from the paper. Please contact us if we missed an updated version with different numbers.

Single Scan Multiple Scans

Approach	Paper	Code	mloU	Classes (IoU)	Details 🔺	
RPVNet	L		70.3	ing_stic_int_intere	Q	
AF2S3Net	Å		69.7	in	Q	
Cylinder3D	Å	0	67.8	 	Ð	
SPVNAS	Å	0	66.4	I	Ð	
JS3C-Net	L	0	66.0	III	Ð	
AMVNet	<mark>,</mark>		65.3	Innesta_101-10100es	Ð	
Lite-HDSeg	Å		63.8	I	Q	
TORNADONet	Å		63.1	I	Q	
KPRNet	2		63.1	1	Ð	

Cylinder3D

- Cylindrical Partition
 - varying-density, imbalanced distribution
 - cylinder coordinate

Asymmetrical 3D Convolution Network

- specific object shape distribution (cubic objects)
- asymmetrical residual block (match ~)

• Summary

- outdoor LiDAR point cloud
- distribution: point cloud & specific object
- cylinder coordinate

SPVNAS

Sparse Point-Voxel Convolution

Point-Based Branch

- Sparse Convolution cannot always keep high-resolution
- Point-Voxel Convolution does not scale up to large 3D scenes

• 3D Neural Architecture Search

- architecture search framework for 3D scene
- improves the efficiency and performance of SPVCNN

Summary

- SPVNC: large scenes & high-resolution
- NAS (evolutionary search)
- lightweight, fast and powerful

END

Reach me at lihongyang@senseauto.com